منابع
[1] Kundur, P., "Power system stability and control", McGraw-Hill, USA, 1994.
[2] Chen, G. P., Malik, O. P., Hope, G. S., Qin, Y. H., and Xu, G. Y., "An adaptive power system stabilizer based on the self-optimization pole shifting control strategy",IEEE Trans. on Energy Conversion, Vol. 8, No. 4, 1993.
[3] Yousef, A. M., Kassem, A. M., "Optimal pole shifting controller for interconnected power system", Energy Conversion and Management, Vol. 52, 2011.
[4] Furini, M. A., Pereira, A. L. S., Araujo, P. B., “Pole placement by coordinated tuning of Power System Stabilizers and FACTS-POD stabilizers”, Electrical Power and Energy Systems, Vol. 33, 2011.
[5] Farsangi, M. M., Song, Y. H., Tan, M., “Multi-objective design of damping controllers of FACTS devices via mixed H2/ H∞ with regional pole placement,” Electrical Power and Energy Systems, Vol. 25, 2003.
[6] Zhu, C., Khammash, M., Vittal, V. and Qiu, W., “Robust Power System Stabilizer Design Using H∞ Loop Shaping Approach,”IEEE Trans.On Power Sysrem, Vol. 18, No. 2, 2003.
[7] Soliman, M., Elshafei, A. L., Bendary, F., Mansour, W., “Robust decentralized PID-based power system stabilizer design using an ILMI approach”, Electric Power Systems Research, Vol. 80, 2010.
[8] Xia, D., Heydt, G. T., “Self-tuning controller for generator excitation control,”IEEE Trans. PAS, Vol. 102, , 1983.
[9] Ramakrishna, G., Malik, O. P., “Adaptive PSS using a simple on-line identifier and linear pole-shift controller”, Electric Power Systems Research, Vol. 80, 2010.
[10] Abdelazim, T., and Malik, O.P., “An adaptive Power System Stabilizer Using On-line Self-learning Fuzzy Systems” In Proceedings, IEEE Power Engineering Society 2003 General Meeting, July 13-17, Toronto, Canada, 2003.
[11] You, R., Eghbali, H. J., Nehrir, M. H., “An Online Adaptive Neuro-Fuzzy Power System Stabilizer for Multimachine Systems” IEEE Transaction on Power System, Vol. 18, No.1, 2003.
[12] Hwang, G. H., Kim, D. W. J., Lee, H., An, Y. J.,” Design of fuzzy power system stabilizer using adaptive evolutionary algorithm”, Engineering Applications of Artificial Intelligence, Vol. 21, 2008.
[13] Hussein, T., Saad, M. S., Elshafei, A. L. Bahgat, A.,” Damping inter-area modes of oscillation using an adaptive fuzzy power system stabilizer”, Electric Power Systems Research, Vol. 80, 2010.
[15] He, J., Malik, O.P, An Adaptive Power System Stabilizer Based on Recurrent Neural Networks. IEEE Transactions on Energy Conversion, Vol. 12, No. 4, 1997.
[16] Duwaish, H. N., Hamouz, Z. A., “A neural network based adaptive sliding mode controller: Application to a power system stabilizer”, Energy Conversion and Management, Vol. 52, 2011.
[17] Kyanzadeh, S., Farsangi, M.M., Nezamabadi-pour, H., Lee, K.Y., Design of Power System Stabilizer Using Immune Algorithm. 14th International Conference on Intelligence Systems Application to power Systems ~ISAP2007~, 2007.
[18] Kyanzadeh, S., Farsangi, M.M., Nezamabadi-pour, H., Lee, K.Y., Damping of Inter-area Oscillation by Designing a Supplementary Controller for SVC Using Iimmune Algorithm, IFAC Symposium on Power Plants and Power System Control, 2007.
[19] Kyanzadeh, S., Farsangi, M.M., Nezamabadi-pour, H., Lee, K.Y., Design of a Supplementary Controller for SVC Using Hybrid Real Immune Algorithm and Local Search, IEEE Power Engineering Society General Meeting, 2008.
[20] Bijami, E., Askari, J. and Farsangi, M.M., Power System Stabilizers Design by Using Shuffled Frog Leaping, The 6th International Conference on Technical and Physical Problems of Power Engineering, 2010.
[21] Shayeghi, H., Shayanfar, H.A., Jalilzadeh, S., Safari, A.,” Multi-machine power system stabilizers design using chaotic optimization algorithm”, Energy Conversion and Management, Vol. 51, 2010.
[22] Khaleghi, M., Farsangi, M. M., Nezamabadi-pour, H., Lee, K.Y., “Pareto-Optimal Design of Damping Controllers Using Modified Artificial Immune Algorithm”,IEEE Trans.syst man and cybernetics, 2011.
[23] Ho, D. W. C., Zhang, P. A., Xu, J., “Fuzzy wavelet networks for function learning”. IEEE Trans. Fuzzy Systems, Vol. 9, No. 1, 2001.
[24] Zekri, M., Sadri, S., Sheikholeslam, F., Adaptive Fuzzy Wavelet Network Control Design for Nonlinear Systems. Fuzzy Sets and Systems. Vol. 159, 2008.
[25] Tang Tzeng S., Design of fuzzy wavelet neural networks using the GA approach for function approximation and system identification, Fuzzy Sets and Systems, Vol. 161, , 2010.
[26] Abiyev, R. H., Kaynak, O., Fuzzy wavelet neural networks for identification and control of dynamic plants—a novel structure and a comparative study, IEEE Transactions on Industrial Electronics, Vol. 55, 2008.
[27] Abiyev, R. H., Kaynak, O., Identification and control of dynamic plants using fuzzywavelet neural networks, 2008 IEEE International Symposium on Intelligent Control, Texas, USA, 2008.
[28] Huynh, T. H., “A Modified Shuffled Frog Leaping Algorithm for Optimal Tuning of Multivariable PID Controllers”,
IEEE International Conference on Industrial Technology, ICIT, 2008.
[29] Eusuff, M. M., Lansey, K., Pasha, F., “Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization,” Engineering Optimization, Vol. 38, No. 2, 2006.
[30] Chow, J., Power System Toolbox: A Set of Coordinated m-Files for Use with MATLAB, ON, Canada: Cherry Tree Scientific Software, 1997.