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Abstract: 
Installing new energy sources as redundant black-start (BS) units is an efficient way to enhance the speed 

of power system restoration, especially when there is a high risk that the available power plants 

considered as BS units fail to operate. In this regard, this paper provides a new optimal design for the 

placement of the Gas Turbine (GT) as the redundant energy source to improve the power system 

performance during both restoration and normal conditions. In doing so, there will be contradictory 

objective functions to be minimized. Therefore, a multi-objective problem (MOP), as a mixed integer 

linear programming (MILP), is defined. The Pareto optimal solutions of the MOP are obtained by using a 

new population-based meta-heuristic technique, called Crow Search Algorithm (CSA). Two power 

systems are used for the validation of the proposed method. The simulation results show that the system 

can benefit from this method not only to increase the capability of black-start generation, but also to 

improve the power system performance in normal conditions. During the restoration process, it also 

provides the optimal start-up sequences of non-black-start (NBS) units with the optimal transmission 

paths. 

Keywords: Power System Restoration, Black-start Units, Crow Search Algorithm, Multi-objective 

Design, Pareto Optimal Set. 

 

1. Introduction 
1
 

The modern power systems are being controlled 

in a high level of reliability and security. 

However, different unpredicted events may 

occur and, in turn, cause to have a wide area of 

cascading failures and then a blackout for the 

entire system [1-2]. This can impose huge 

economic losses and negative social impacts. 

Therefore, the quick restoration of a power 

system after a blackout is one of the most 

important concerns for power system 

dispatchers, operators and planners [3]. 

The process of power system restoration 

includes three stages: preparation, transmission 

paths reconfiguration and load restoration [4]. In 

the preparation stage, the black-start units are 

commissioned, and then transmission paths are 

connected to crank non-black-start units 

(NBSU) in order to be started up [5]. The 

objective of this stage is mainly to maximize the 

generation capability. In this regard, many 
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researchers have formulated this objective as an 

optimization problem [3-6]. In [3] and [5] 

authors propose an algorithm that formulates 

generator start-up sequence as a MILP problem. 

In [3] the firefly algorithm (FA) is used to 

search the final optimal sequence of NBSUs, 

transmission paths and load pick up sequence by 

the aid of renewable energy sources (RES) 

already installed in power system. In [5] an 

optimal generator start-up strategy is addressed 

to find a sequence of starting time for all 

NBSUs and also to update the generation 

capability during system restoration. In [6], an 

initial restoration sequence of generators is 

obtained by using a mixed integer linear 

problem (MILP) method. Then, the final 

restoration sequence is manually acquired by 

using this initial guess after many trials. A 

decision making support system is addressed in 

[7-8] to search the optimal black-start strategy 

by using a concept of the vague-valued fuzzy 

measure. In [9] a steady state model is 

developed to optimize the total generator power 

output through searching the optimal start-up 

sequence of NBSUs by using the shortest path 

decision. In [10], the optimal start-up sequences 

of generators are designed by applying an 

algorithm based on Dijkstra method for finding 

the shortest path during power system 
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restoration. In [11], the optimal network 

reconfiguration was designed into two 

separately steps. In the first step, the optimal 

sequence design of generating units was done to 

maximize the restored generation capability, 

and in the second step, the optimal transmission 

path is obtained to crank the generating units.  

In [12] a combined design of the generating 

start-up sequence and the transmission path 

search is presented as an optimization problem 

and solved by using firefly algorithm. 

In all researches published so far, to the best 

of our knowledge, the selection of black-start 

unit (BSU) as a starting point of restoration 

process has been based on the existed units 

within the power system without performing 

any design procedure to locate these units.  In 

this regard, although the hydro and Gas Turbine 

(GT) power plants that are generally considered 

as the BSUs, due to the high speed of 

commissioning, it will be possible that these 

plants do not have enough capabilities to crank 

NBS units [13]. Some of the hydro power plants 

are not available because of the insufficient flow 

of the water or the low level of the stored water 

behind the dam [14]. Moreover, when the 

already-installed gas turbine power plants 

continuously work in the system, there is a high 

risk that after blackout, the technical problem in 

fuel system causes to trip the unit or it may not 

permit to start the unit for restoration 

preparation [15]. Furthermore, in both gas 

turbine and hydro power plants, the failure of 

control systems may stop the process of starting 

BSU [15-16]. Therefore, considering redundant 

BSUs is necessary to crank and to increase the 

speed of restoration [17-19]. 

There are many situations during the normal 

condition of a power system that the system 

should be able to respond to the sudden load 

demands very quickly. In these cases the new 

installed GTs that can be started very fast could 

be one of the best options to help the system 

increase the generations in the shortest possible 

time [20-21]. Therefore, it will be more 

economical to place these units in the locations 

where the minimum power losses are achieved.  

They must also justify another important 

constraint which is the voltage violation during 

the normal condition. Therefore, the problem of 

the optimal placement of GTs, as the good 

candidates for redundant BSUs, will be solved 

by increasing the capability of black-start 

generation and also improving the power system 

performance in normal conditions.  In doing so, 

a multi-objective function is used to obtain the 

best locations of GTs, the optimal transmission 

path and the optimal generators start-up 

sequences by considering the black-start 

capability criterion. 

There are several techniques for finding the 

optimal transmission path in a power system 

including expert system [22], artificial neural 

networks [23], power transfer distribution factor 

(PTDF)-based approach [24], linear 

programming-based approach [25], heuristic 

approaches [26] and Dijkstra algorithm [27].  

Among all these techniques, Dijkstra algorithm 

has a simpler structure and, therefore, the 

computational complexity of any proposed 

design is decreased by using this algorithm [28].  

Also, the CPU time of running the proposed 

optimization model during the optimization 

process is decreased. 

The multi-objective function consists of 

minimizing the Unavailable Energy Capability 

(UEC) of the system during the restoration 

process and also minimizing the voltage 

deviations of buses and active power losses in 

transmission system during normal condition to 

achieve the best Pareto optimal set. Then, a new 

population-based meta-heuristic technique, 

called crow search algorithm (CSA) based on 

fuzzy decision making approach is used to 

obtain the Pareto optimal solutions. The idea of 

using CSA is initiated from one of the real and 

intelligent behavior of storing, hiding and 

retrieving process of crow’s food by themselves 

[29]. The high level of efficiency, accuracy and 

robustness to search the Pareto optimal solution 

and the finding capability of the proposed 

algorithm make it be a desirable approach for 

optimizing the MOP addressed in this paper. 

The main contributions of this paper are as 

follows: 

 Optimal placement of the Gas Turbine 

(GT) as the redundant energy source to improve 

the black-start capability, 

 Considering all objective functions related 

to the both restoration and normal conditions 

simultaneously, and 

 Presenting a multi-objective crow search 

algorithm (MOCSA) for searching the optimal 

decision variables. 

The 39-bus New England power system and 

a 32-bus power system are employed as two test 

systems. The simulation results show that not 

only the proposed method is capable of finding 

the best locations of the redundant GTs, but also 

it finds the optimal start-up sequences of NBS 

units with the optimal transmission paths in 

order to speed up the restoration process.  It also 

improves the performance of the power system 

in normal conditions. 

The rest of the paper is organized as follows: 

Section 2 describes the problem formulation. In 
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Sections 3 and 4, the solution approach 

(MOCSA) is given to solve the proposed multi-

objective problem. Simulation results are given 

in Section 5 and finally, Section 6 concludes the 

paper. 

2. Problem Formulation 

The formulation of the multi-objective model 

for searching the location of a GT including 

three objective functions and their constraints is 

given in this section. 

2.1. Objective Functions  

The employed objective functions for the 

proposed multi-objective model are explained in 

this subsection. 

2.1.1. Unavailable Energy Capability Objective 

Function 

The first objective function is used to minimize 

the total generation capacity (MWh) which is 

not available after blackout [3] and is given by 

the following equation [3]: 

min max

1 max
1

min ( ) ( )*
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(1) 

The optimal start-up sequence of NBS units 

and the optimal locations of GTs are obtained 

by the optimization of the first objective 

function. The optimal transmission paths are 

also determined when the objective function f1 

is calculated. This will be described in the next 

subsection. 
 

2.1.1.1. Optimal Path Search Algorithm 

A minimum spanning tree method is used here 

to find the shortest paths between two nodes in 

network and can be shown as a graph [30]. This 

algorithm, which is an iterative process, has 

been introduced by W. Dijkstra [30]. A simple 

example of this algorithm is shown in Fig. 1. In 

this figure, a shortest path is found between 

node A (source node) and node E (destination 

node). The start point of this algorithm is shown 

by coloured node A (step 1). In the first 

iteration, the algorithm searches the adjacent 

node from the source node, which must be the 

nearest node to the source node (step 2).  In the 

second iteration, the algorithm searches the 

second nearest node from the source node  

(step 3).  This node must be the nearest node 

from the first node which was the closest to the 

source node. This procedure iteratively 

continues so that the minimum spanning tree for 

the source node is found (step 4). This tree gives 

an optimal path which includes all nodes. 
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Fig (1): Dijkstra algorithm [30] 

 

2.1.2. Minimization of Active Power Loss 
Minimizing the active power loss is formulated 

as follows [31]: 

min max
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(2) 

 

2.1.3. Voltage Violation 

The following objective function is given to 

reduce the voltage violation in all PQ buses 

[31]:  

min max
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2.2. Decision Variables 
The decision variables are optimally obtained 

after completing the optimization process in 

order to achieve the best optimal solution. In the 

proposed design method, a constrained 

optimization problem will be described as a 

multi-objective function and minimized subject 

to 
min max
jstart jstart jstartt t t   and min maxi i iL L L  . 

The jstartt and iL are defined as the decision 

variables and imply all start-up times of NBS 

units and the location of a GT (redundant BSU) 

respectively. 
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2.3. Multi-objective Design 

In multi-objective design it is impossible to 

obtain an optimal solution when all objective 

functions are simultaneously being optimized, 

because the objective functions are different and 

each function is not compromised with other 

functions. In this condition, a decision maker 

chooses a “most effective” answer as an optimal 

solution [32]. Generally, the equation of a MOP 

can be formulated as follows; 

Optimize 

       1 2 (1 )[ , ,..., ] T
K Kf f f F X X X X  (4) 

The vector  1 2, ,..., nx x xX  is defined as 

decision variables and obtained by solving Eqn. 

(4). Also, this MOP is executed subject to 

regard the total number of all constraints. These 

constraints consist of inequality ( ieqN ) and 

equality ( eqN ) constraints as given in Eqns. (5) 

and (6), respectively. 

  0, 1,2,...,i ieqg i N X  (5) 

  0, 1,2,...,j eqh j N X  (6) 

In this study, Eqns. (5) and (6) include all 

equality and inequality constraints given in 

Eqns. (1), (2) and (3) which are the starting 

times of NBSUs and the generation capability of 

BSUs, active and reactive power balance and 

also the voltages of buses. 

Generally, the proposed MOP is optimized 

by storing a group of most desirable answers in 

a repository and renewing the group at any 

iteration [33]. In this technique, the best 

acquired answers are defined as non-dominated 

answers or Pareto optimal set. An answer can be 

determined as a Pareto optimal set if and only if 

Eqn. (7) is satisfied. 
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(7) 

In Eqn. (7) 


X  is defined as the Pareto optimal 

set of the possible search space of  . It also 

implies that enhancing one objective function 

by an allowable answer will be gained by 

degrading the optimal solution of at least one of 

the other objective functions. 
 

2.4. Best Acceptable Solution 

In the optimization process, it is required that a 

solution be considered between all non-

dominated answers of the Pareto optimal set as 

the best allowable answer [33]. In this paper, a 

fuzzy mechanism is used for three objective 

functions (f1, f2, f3) because their values are not 

precise. In this regard, a fuzzy membership 

function is defined for achieving the most 

desirable answer. For all individual recorded in 

repository, the following equation is formulated 

[33]: 
max
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(8) 

where max

if and min

if  are described as the 

maximum and minimum limits of each 

objective function respectively. These amounts 

are calculated by comparing with the values 

acquired by the single optimization of each 

objective function. 

The normalization of the membership of the 

recorded individuals could be done according to 

the following equation [34]: 
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 (9) 

where h ,d , kw  are the total number of 

objective functions, the number of Pareto 

optimal answers in repository and the weight of 

Kth objective function respectively. Finally, the 

best compromise solution is considered as the 

solution which has the maximum N 
. 

2.5. Repository Size Control 

One of the main factors in the design of any 

evolutionary optimization approach is to control 

its repository’s size [35-36]. In this paper, a 

fuzzy clustering technique is used to control the 

size of the repository without changing its 

characteristics [35]. In doing so, each solution 

of the repository is defined as a cluster with 

definite radius. Neighbor clusters are combined 

until the proper repository size is achieved. In 

the combining stage, the member with the 

higher membership value of combined clusters 

is chosen to be recorded in the repository. The 

flowchart of the whole mechanism using fuzzy 

based clustering is given in Appendix. 

3. Crow Search Algorithm 

The idea of crow search algorithm (CSA) was 

firstly created from one of the real and 

intelligent behavior of crows by A. Askarzadeh 

in 2016 [29]. This algorithm formulates the 

storing, hiding and retrieving process of crow’s 

food by themselves.  The full details of CSA are 

given in [29]. 
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One of the most important specifications of 

meta-heuristic algorithms is satisfying a good 

balance between diversification and 

intensification [37]. In CSA, intensification and 

diversification are principally balanced by the 

parameter of awareness probability (AP). By 

decreasing the value of AP, the searching 

process will go into a local area in CSA where a 

current good solution is obtained in this area.  

On the other hand, increasing the value of AP 

conducts searching process in CSA into the 

global area (randomization). Therefore, 

diversification is increased by applying the large 

values of AP. 

4. Implementation of CSA in Multi-

objective Design for Optimal 

Placement of GTs 

Now, the design procedure for implementation 

of CSA in multi-objective design is described as 

follows: 

Step 1: Determine the required data which 

are flock size of crows (N), flight length (fl), 

awareness probability (AP), maximum iteration, 

and Pareto archive dimension. 

Step 2: Generate the initial random 

population of crow’s position and their 

memories. 

Step 3: Compute the value of objective 

functions for each crow by solving Equation 4. 

Step 4: Investigate the constraints of the 

problem by using Eqns. (1), (2) and (3). If the 

constraints are not satisfied, consider a high 

value of penalty for objective functions related 

to the current crow, otherwise, ignore it. 

Step 5: Search the non-dominated solutions 

among the possible solutions and record them in 

the Pareto repository according to Eqns. (8) and 

(9).  

Step 6: Check the repository size. If the size 

of repository is more than the maximum 

predefined size, remove the extra member with 

fuzzy based clustering mechanism. 

Step 7: Generate the new population of 

crow’s position by using Eqns. (10) and (11). 

Step 8: Check the feasibility of the new 

population of crow’s position.  If the new 

position is possible, go to step 9.  Otherwise, go 

to step 7. 

Step 9: Compute the value of objective 

functions for each crow by solving Equation 4. 

Step 10: Investigate the constraints of the 

problem by using Eqns. (1), (2) and (3). If the 

constraints are not satisfied, consider a high 

value of penalty for objective functions related 

to the current crow, otherwise, ignore it. 

Step 11: Update the repository by replacing 

the new non-dominated solutions according to 

Eqns. (8) and (9). 

Step 12: Check the repository size. If the 

size of repository is more than maximum 

predefined size, remove the extra member with 

fuzzy based clustering mechanism. 

Step 13: Check the convergence criterion.  If 

the maximum iteration number is reached, stop 

the execution of the algorithm.  Otherwise go 

back to step 7. 

The flowchart of the above-mentioned steps 

is given in Fig. 2. 

5. Simulation Results 

In this section, the proposed method is 

performed on two different power systems to 

show its efficient performance during 

restoration and normal conditions. 

5.1.  The 39-bus New England Power 

System 

The single line diagram of the 39-bus New 

England power system is depicted in Fig. 3 and 

its information can be found in [38]. This 

system is segmented into two subsystems only 

at restoration condition according to [3], and 

each subsystem must have at least one black-

start unit [39]. Therefore, the number of already 

installed BSUs is assumed to be 2, which are G6 

and G10 [3, 5]. As mentioned in section 1, it is 

essential that the redundant BSUs (GTs) be 

considered for each power system, and their 

optimal locations are obtained. 

Start

Import the required data 

Generate the initial random population

Compute the value of objective functions

Iter=iter+1

Iter=0

Generate new population of crow’s position by using [29]

Is the new position feasible?
No

Compute the value of objective functions of new position

Search the non-dominated solution using Pareto optimal method 

according to Eqns. (8), (9). 

Update the repository by replacing the new non-dominated solutions 

iter≤itermax

Yes

Yes

End
No

Investigate the constraints of the problem by using Eqns. (1), (2) and (3).

Investigate the constraints of the problem by using Eqns. (1), (2) and (3).

Check the repository size. If the size of repository is high then remove 

the extra member by using fuzzy based clustering mechanism 

Check the repository size. If the size of repository is high then remove 

the extra member by using fuzzy based clustering mechanism  

Fig (2): Flowchart of application of CSA on multi-

objective design 
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Fig (3): IEEE 39-bus power system [37] 

 

Now, the proposed design procedure is 

performed in two stages. First, the single 

objective design is done to specify and to use 

the limit values of three objective functions f1, f2 

and f3 ((Eqns. (1), (2) and (3)) for the second 

stage (multi-objective design). Then, the multi-

objective design is carried out to determine the 

optimal solution (or optimal decision variables), 

which are the start-up times of NBS units and 

the locations of GTs. The required data of 

generators for black-start process are given in 

Table 1 according to [5]. In this table, 

ctpT refers to the cranking time for generator to 

start to ramp up for connecting with system, and 

rR  is the rate of generator ramping. 

Table (1): Characteristics of generating units in 

39-bus system [4] 

unit Type 
Pmax 

(MW) 

Pstart 

(MW) 

Rr 

(MW/hr) 

Tmax 

(min) 

Tmin 

(min) 

G1 Coal 572.9 5.5 215 N/A 40. 

G2 Nuc. 650 8 246 N/A N/A 

G3 Nuc. 632 7 236 120 N/A 

G4 Coal 508 5 198 N/A 70 

G5 Coal 650 8 244 60 N/A 

G6 Nuc. 560 0 214 N/A N/A 

G7 Coal 540 6 210 N/A N/A 

G8 Nuc. 830 13.2 346 N/A N/A 

G9 Nuc 1000 15 384 N/A N/A 

G10 Hyd. 250 0 162 N/A N/A 

 
5.1.1. Single Objective Design 

In this part, single objective design is performed 

by using CSA algorithm. The extracted data of 

this part are used as the limits for the multi-

objective approach. 

 

5.1.1.1. Restoration Condition 

In this subsection, the objective function f1 

(Eqn. (1)) is minimized by using CSA so that all 

optimal start-up times of NBS units and the best 

locations of GTs (redundant BSUs) are obtained 

and the results are given in Table 2. The 

convergence curve of f1 is also shown in Fig. 4. 

The last row of Table 2 shows the best value of 

the objective function f1 used for the limits 

considered in multi-objective method. By using 

the optimal search path algorithm explained in 

section 2.1.1.1, the optimal start-up sequences 

of NBSU units are obtained and given in Table 

2. In this regard, each subsystem includes one 

redundant BSU and four NBSUs. . It should be 

mentioned that the capacity of each gas turbine 

is selected to be 50 MW because the total 

amount of power needed for starting all NBS 

units (Pstart) in each subsystem is 50 MW. 

 

Fig (4): CSA-based convergence curve of UEC 

 

Table (2): Optimal design of generators start-up 

process using CSA-based design considering 

redundant BSU 

S
u

b
sy

st
em

 1
 Gen G10 G1 G2 G8 G9 BSU 

BSU - - - - - √ 

NBSU √ √ √ √ √ - 

(min)startt
 

25 40 40 30 40 15 

Location 
of BSU 

- - - - - Bus 3 

S
u

b
sy

st
em

 2
 Gen G4 G3 G5 G6 G7 BSU 

BSU - - - - - √ 

NBSU √ √ √ √ √ - 

(min)startt  70 40 30 30 35 15 

Location 
of BSU 

- - - - - Bus 16 

Value of  UEC 2334.9 
 

The colored optimal path of cranking power 
for all NBSUs is depicted in Fig. 5. In this 
figure, the sequence of start-up for all NBSUs is 
determined by a specific color. For more 
clarification, the details of these paths are given 
in Table 3. 
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Fig (5): Optimal generator start-up of IEEE 39 

bus power system using redundant BSU 
 

As mentioned before, G6 and G10 have been 
considered as main BSUs. A comparison is 
performed between two different cases where 
the system is equipped with new GTs as 
redundant BSUs and the case where new GTs 
are not installed. The results are presented in 
Table 4. The results given in this table show that 
the value of UEC for all cases is desirably 
decreased when new GTs are used when either 
G6 or G10 fails to operate. For example, in case 
1 when G6 fails to operate, the value of UEC by 

using new GTs (2309.9 min. p.u.) is lower than 
the ones without new GTs (2870.60 min. p.u.). 
For the worst situation (case 3) when both G6 
and G10 fail to operate, by using new GTs as 
redundant BS units, the value of UEC is 
2334.90 min. p.u., which means that the black-
start process is successfully performed. 

Table (3): The optimal cranking power paths of 

NBSUs in New England power system 

Location of 
redundant 

BSU 

NBS 
unit 

optimal cranking power 
paths 

Bus 3 G1 Bus: 3→2→1→39 

Bus 3 G2 Bus: 3→4→6→31 

Bus 3 G8 Bus: 3→2→25→37 

Bus 3 G9 
Bus: 

3→2→25→26→29→38 

Bus 3 G10 Bus: 3→2→30 

Bus 16 G3 
Bus: 

16→15→14→13→10→32 

Bus 16 G4 Bus: 16→19→33 

Bus 16 G5 Bus: 16→19→20→34 

Bus 16 G6 Bus: 16→21→22→35 

Bus 16 G7 
Bus: 

16→21→22→23→36 
 

Table (4): Effect of GTs as the redundant BSUs in black-start process during different cases 

Gen. unit 1 2 3 4 5 6 7 8 9 10 

W
ith

 

G
T

s 

tstart 40 40 40 70 30 30 35 30 40 15 

value of UEC 2309.90 

W
ith

o
u

t 

G
T

s 

tstart 40 50 50 70 55 55 60 30 40 15 

value of UEC 2870.60 

W
ith

 G
T

s 
tstart 40 40 40 70 45 15 30 30 40 25 

value of UEC 2320.5 

W
ith

o
u

t 

G
T

s 

tstart 65 60 55 70 45 15 30 55 55 55 

value of UEC 3948.7 

W
ith

 

G
T

s 

tstart 40 40 40 70 30 30 35 30 40 25 

value of UEC 2334.90 

W
ith

o
u

t 

G
T

s 

tstart ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

value of UEC ∞ 

 

5.1.1.2. Normal Condition 

In this subsection, the values of objective 

functions f2 and f3 (Eqns. (2) and (3)) are 

separately minimized by executing the CSA 

based power flow analysis. Optimizing f2 and f3 

gives the locations of GTs during the steady 

state condition. Figures 6 and 7 show the 

convergence curves of f2 and f3 respectively. The 

optimal values of these curves are shown in 

Table 5. The best locations of GTs and the 

minimum value of the related objective function 

are presented in this table. The third column of 

Table 5 gives different locations for GTs (bus 8 

for f2 and bus 21 for f3) because of having the 

conflict between the single objective functions 

during the optimization process. Also, the 

extracted data of active power loss (0.4164 p.u.) 

and voltage violation (2.2513 p.u.) given in this 

table are chosen as the limits for the multi-

objective approach. As expected and given in 

Tables 2 and 5, the location of GTs are different 
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because different objective functions have been 

used in different conditions. 
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Fig (6): CSA-based convergence curve of active 

power loss in steady state condition 
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Fig (7): CSA-based convergence curve of voltage 

violation in steady state condition 

 

Table (5): Optimal design of objective function 

during CSA-based power flow analysis 

Objective 

function 

Value of objective 

function 

Locations of  

New GTs 

Active power 

loss (p.u) 
0.4164 Bus 8 

Voltage 

violation (p.u) 
2.2513 Bus 21 

 

To show the efficiency of Dijkstra algorithm 

during searching the optimal cranking paths, a 

comparative analysis between this algorithm 

and heuristic algorithms is performed. The 

results shown in Table 6 imply that the CPU 

time of Dijkstra algorithm (1105 s) for finding 

the optimal paths is less than the heuristic 

algorithms including PSO (1240 s) and CSA 

(1235 s). Also, executing the program in 100 

times, Dijkstra algorithm gives the best cranking 

paths in 95% of the total trials which is much 

more than the other algorithms; 87% and 85% 

for CSA and PSO algorithms respectively. 
 

 

Table (6): Comparison of the results for different 

algorithms to obtain optimal path 

Criteria  Algorithm  

 
Dijkstra-

based 

CSA-

based 

PSO-

based 

CPU time (s) 1105 1235 1240 

Number of iteration 32 43 47 

No. global solution 95 87 85 

 

5.1.1.3. Multi-objective Design 

In this section, the CSA based multi-objective 

design is executed to attain the optimal decision 

variables (all optimal start-up times of NBS 

units and the best locations of GTs) by the 

coordinated optimization of three objective 

function f1, f2 and f3 ((Eqns. (1) , (2) and (3)), 

and results are shown in Table 7. The Pareto 

optimization curve is displayed in Fig. 8 in 

which the red star is assigned as the best 

compromise solution. According to Table 7, the 

optimal values of objective functions are more 

than the optimal ones obtained in single 

objective design (see Tables 2 and 5). This is 

because of the fact that all objective functions 

are simultaneously minimized in the multi-

objective design. Table 6 also shows that the 

value of UEC (2522.37 p.u. min) obtained in 

MOP design is lower than the ones obtained in 

Table 4 for cases when new GTs are not used. 

This means that the multi-objective optimization 

method has a desirable performance in black-

start process. Also, the start-up times of G2, G3, 

G5 and G7 in multi-objective design are less 

than the cases where new GTs are not used as 

given in Table 4. 
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Fig (8): Pareto curve of CSA-based multi-

objective method 

Table (7): Optimal multi-objective design using 

CSA-based optimization  

S
u

b
sy

st
em

 1
 

Gen G10 G1 G2 G8 G9 
redundant

 

BSU 

BSU - - - - - √ 

NBSU √ √ √ √ √ - 

(min)startt
 

35 40 30 35 55 15 

Location of 

BSU 
- - - - - Bus 5 
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S

u
b

sy
st

em
 2

 

Gen G4 G3 G5 G6 G7 
redundant

 

BSU 

BSU - - - - - √ 

NBSU √ √ √ √ √ - 

(min)startt  70 45 35 35 25 15 

Location of 

BSU 
- - - - - Bus 24 

Value of  UEC 

(p.u . min) 
2522.37 

Active power loss 

(p.u) 
0.426 

Voltage violation 

(p.u) 
2.2570 

 

It should be noted that all objective 

functions are weighted by the same coefficient 

(w1=w2=w3=0.33). w1, w2 and w3 show the 

weights of three objective functions of UEC, 

active power loss and voltage violation, 

respectively. In order to show the reason of 

choosing these weights, two different solutions 

with different weights are used for IEEE 39-bus 

power system and the results are shown in Table 

8. As can be seen in this table, the value of UEC 

for solution 2 (2522.3 pu.m) is very close to 

solution 1 (only 0.8% difference). However, the 

values of active power loss and voltage 

violation in solution 2 (0.426 pu and 2.257 pu) 

have been decreased in comparison with 

solution 1 by 7% and 1.2 % respectively. This 

means that considering similar weight 

coefficients for objective functions in multi-

objective design desirably decreases the active 

power loss and voltage violation in normal 

operation and also maintains the value of UEC 

close to solutions 1 and 2. 

Table (8): Results of different solution of GT 

optimal placement for IEEE 39 bus power system 

Solution 

Value of 

UEC 

(pu.min) 

Value of 

voltage 

violation 

(pu) 

Value of 

active 

power 

loss (pu) 

1

2

3

0.7

1: 0.15

0.15

w

solution w

w





 

 2500.5 2.284 0.456 

1

2

3

0.33

1: 0.33

0.33

w

solution w

w





 

 2522.3 2.257 0.426 

 

Another analysis is also performed for 

verifying the normal condition. The active 

power loss and the voltage violation of the 

system are computed before and after 

installation of new GTs. The results are given in 

Table 9. As can be seen in this table the active 

power loss and voltage violation are efficiently 

declined when new GTs are used.  For example, 

the active power loss after using new GTs 

decreases about %7.66 for case 3 (max load). 

Also, the value of voltage violation decreases 

about %1.47. 

To assess the performance of CSA 

algorithm, a comparison is also done between 

CSA, particle swarm optimization (PSO) and 

genetic algorithm (GA) methods for three cases 

of the best, average and worst solutions. The 

results of this comparative analysis are 

presented in Table 10. As shown in this table, 

the proposed CSA provides more desirable 

results in comparison with other two algorithms. 

For example, UEC amount in “best solution” 

part is 2522.37 for CSA method while this 

amount is 2528.45 for PSO and 2533.71 for GA. 

Executing the program in 100 times, CSA 

achieves to the best solution in 91% of the total 

trials which is much more than the other 

algorithms; 85% and 78% for PSO and GA 

algorithms respectively. This result shows the 

robustness of the proposed algorithm. 

Moreover, CPU time of CSA is lower than that 

of PSO because it is minimized to obtain the 

optimal solution in less iteration, needs fewer 

members, and it also avoids from being trapped 

in the local solution.  The amount of the 

standard deviation is also lower for CSA than 

the others.  As can also be seen in Table 10, the 

number of global solutions in this algorithm is 

higher than the others, and its standard deviation 

of N   has lower value in comparison with 

other algorithms. 

Table (9): Extracted data during power flow 

analysis for normal condition 

Objective function 
Active 

power loss 

Voltage 

violation 

Case 1 

(min 

load) 

Without 

new GTs 
0.4214 2.2513 

With new 

GTs 
0.4135 2.2291 

Case 2 

(mid 

load) 

Without 

new GTs 
0.4294 2.2587 

With new 

GTs 
0.4182 2.2320 

Case 3 

(max 

load) 

Without 

new GTs 
0.4592 2.2908 

With new 

GTs 
0.4265 2.2570 

 

 

 

 

 



 

 
28   Computational Intelligence in Electrical Engineering, 10 

th
 year, No.1, 2019 

 

 

Table (10): Comparison of the results obtained by 

different algorithms considering multi-objective 

problem for 100 trials. 

5.2. Case2: 32-bus Power System 

In this subsection, a 32-bus power system is 

considered to apply the proposed method. The 

required data and the single line diagram of this 

power system are given in Table 10 and Fig. 9, 

respectively. In this network, G4 and G5, which 

are already installed to supply electrical energy, 

are also considered as BS units. As reported in 

[17] there is a high risk that these two units fail 

during the restoration process. Therefore, the 

proposed multi-objective design method is 

applied to this system to find the location of the 

redundant BSU that should be installed in the 

system as well as determining the optimal 

starting times of NBSUs. Like 39-bus power 

system this power system is also divided into 

two subsystems as shown in Table 11. 
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Fig (9): Single line diagram of 32-bus power 

system 
 

 

 
 

 

 

 
 

 

Table (11): Characteristics of generating units in 

32-bus power system 

Generating 

unit 
G1 G2 G3 G4 G5 G6 

Type of unit steam steam steam Gas Gas Gas 

Pmax 

(MW) 
800 800 830 780 270 420 

Pstart 

(MW) 
12 12 14 8 5 7 

Rr 

(MW/min) 
5 5 4 10 10 7 

Tmax 

(min) 
90 90 120 N/A N/A N/A 

Tmin 

(min) 
30 30 30 N/A N/A N/A 

 

The results of this analysis are given in 

Table 12. The Pareto optimization curve is 

depicted in Fig. 10. In this figure, the best 

compromise solution is optimally obtained and 

shown by the magenta star considering 1,2,3i  . 

The value of wi in Eqn. (9), as mentioned for 

39-bus power system, is also considered to be 

equal ( 0.33iw  ) for this system. 

The optimal cranking power paths of 

NBSUs are given in Table 13 according to the 

obtained data of CSA-based multi-objective 

design. As can be seen in Tables 11 and 12, 

redundant BSUs (new GTs) are optimally 

located in buses 14 and 17 in subsystems 1 and 

2 respectively. Since it is assumed that the 

maximum amount of power needed for starting 

all NBS units (Pstart) in each subsystem is 50 

MW, the capacity of each new GT is selected to 

be 50 MW. 
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Fig (10): Pareto curve of CSA-based multi-

objective method 

A power flow analysis is carried out to 

display the effective locations of new GTs in 

satisfying the operating constraints according to 

the proposed method. In this analysis, three 

different cases of minimum load, medium load 

and maximum load are chosen. The active 

power loss and the voltage violation of the 

system are calculated before and after 

installation of new GTs. The results are shown 

in Table 14. As can be seen in this table the 

active power loss and voltage violation are 

efficiently declined when new GTs are used. 

For example, the active power loss after using 

Solution Criteria 
Algorithm 

CSA PSO GA 

Best 

solution 

active power loss 0.426 0.429 0.431 

voltage deviation 2.257 2.263 2.264 

UEC 2522.37 2528.45 2533.71 

N   0.0343 0.0312 0.0295 

Average 

solution 

active power loss 0.4255 0.433 0.43 

voltage deviation 2.375 2.395 2.44 

UEC 2531.41 2536.50 2540.05 

N   0.0335 0.0305 0.0287 

Worst 

solution 

active power loss 0.431 0.437 0.439 

voltage deviation 2.45 2.48 2.55 

UEC 2533.30 2541.33 2543.65 

N   0.0319 0.03 0.028 

SD 0.000510 0.000550 0.00058 

No. global solution 91 85 78 

CPU time (s) 720.5 735.2 801.5 
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new GTs is 0.6587 (p.u.) for case 3 (max load). 

If these new GTs are installed in the system, this 

value will decrease about %2.17. Also, the 

value of voltage violation decreases about 

%2.26. 

 

Table (12): Optimal multi-objective design using 

CSA for 32-bus power system  

S
u

b
sy

st
em

 1
 

Gen G1 G3 G4 G6 GT1 

BSU - - - - √ 

NBSU √ √ √ √ - 

(min)startt
 

30 30 20 15 15 

Location of 

BSU 
- - - - Bus 14 

S
u

b
sy

st
em

 2
 

Gen 

G2 

- 

√ 

30 

- 

G5 

- 

√ 

10 

- 

GT2 

BSU √ 

NBSU - 

(min)startt  15 

Location of 

BSU 
Bus 27 

Value of  UEC 

(p.u . min) 
963.30 

Active power loss 

(p.u) 
0.6258 

Voltage violation 

(p.u) 
0.9316 

 
Table (13): The optimal cranking power paths of 

NBSUs 

Location 

of BSU 

NBS 

unit 
optimal cranking paths 

Bus 14 G1 Bus: 14→11→9 

Bus 14 G3 Bus: 14→11→13 

Bus 14 G4 Bus: 14→11→3→1→4 

Bus 14 G6 Bus: 14→11→9→7 

Bus 27 G2 Bus: 27→15→28→29 

Bus 27 G5 Bus: 27→24→31 

 
Table (14): Obtained data of objective functions 

during power flow analysis 

Objective function 
Active 

power loss 

Voltage 

violation 

Case 1 

(min 

load) 

Without 

GTs 
0.6298 0.9463 

With new 

GTs 
0.6030 0.9241 

Case 2 

(mid 

load) 

Without 

GTs 
0.6537 0.9666 

With new 

GTs 
0.6250 0.9365 

Case 3 

(max 

load) 

Without 

GTs 
0.6733 0.9733 

With new 

GTs 
0.6587 0.9513 

 

 

6. Conclusions 

In this paper, a new multi-objective design was 

proposed to find the best locations of GTs as the 

redundant black-start units. During the 

optimization process, the optimal generators 

start-up sequences with the optimal transmission 

paths are also determined.  Unavailable energy 

capability, total active power loss and voltage 

deviation are considered as the objective 

functions and are minimized by using the CSA 

algorithm.  The Pareto optimization method was 

applied to optimize the multi-objective problem 

and a group of answers, called Pareto optimal 

solution was obtained.  The simulations results 

showed that active power loss and voltage 

violation are efficiently declined when new GTs 

are added to the system. Also, the unavailable 

energy capability decreased when these GTs 

were applied as redundant BSUs.  It was also 

found that the CSA given in this paper has a 

high speed in convergence, especially when 

compared with other meta-heuristic algorithms. 
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Appendix  

The flowchart of whole mechanism of fuzzy 

based clustering is depicted in Fig. A, where 

Nmax, S, 
ijcd , Ni and Nj show the maximum 

size of repository, current size of repository, the 

distance between two neighbor clusters (i, j), the 

number of solutions in clusters Ci and Cj, 

respectively [35]. 
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Fig (A): The flowchart of whole repository’s size 

controlling using fuzzy based clustering [35] 

 

 

Nomenclature 

igP  
output active power of the i-th 

generator 

jlP  demanded active power at d-th 

PQ bus 

iv
 

the actual value of the voltage 

for i-th PQ bus 

jv  
the actual value of the voltage 

for j-th PQ bus 

ij  
the difference value of phase 

angle between bus i and bus j 

n  Number of generators 

k  Number of PQ buses 

igQ  
output reactive power of the i-th 

generator 

jlQ  demanded reactive power at d-th 

PQ bus 

ijB  
the transfer susceptance between 

bus i and bus j 

ijG  
the transfer conductance 

between bus i and bus j 

refV
 

the value of the reference 

voltage 

miniV  
the lower voltage limit of i-th 

PQ bus 

maxiV  
the upper voltage limit of i-th 

PQ bus 

maxjP  
maximum output power for 

NBS unit j 

jstartP  required start-up power for NBS 
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unit j 

M Total number of NBS units 

minjT  
certain time interval that NBS 

unit j need to be ready for 

receiving crank power 

maxjT  
maximum time interval for 

starting the NBS unit j 

path optjt


 time interval needed to energize 

the optimal path to NBS unit j 

( )igen optP t
 

generation capability of BS unit 

i for cranking the power through 

the optimal transmission path 

jstartt  Starting time of NBS unit j 

 

 

 

 

 

 

 

 


