سبحان شیخیوند؛ سعید مشگینی؛ زهره موسوی
چکیده
استفاده از روشی هوشمند برای تشخیص خودکار مراحل مختلف صرعی در کاربردهای پزشکی، برای کاهش حجم کار پزشکان در تجزیهوتحلیل دادههای صرع با بازرسی بصری، یکی از چالشهای مهم در سالهای اخیر محسوب میشود. ...
بیشتر
استفاده از روشی هوشمند برای تشخیص خودکار مراحل مختلف صرعی در کاربردهای پزشکی، برای کاهش حجم کار پزشکان در تجزیهوتحلیل دادههای صرع با بازرسی بصری، یکی از چالشهای مهم در سالهای اخیر محسوب میشود. یکی از مشکلات شناسایی خودکار مراحل مختلف صرعی، استخراج ویژگیهای مطلوب است؛ بهگونهای که این ویژگیها بتوانند بیشترین تمایز را بین مراحل مختلف صرعی ایجاد کنند. فرآیند یافتن ویژگیهای مناسب، عموماً امری زمانبر است. این پژوهش، رویکرد جدیدی را برای شناسایی خودکار مراحل مختلف صرعی ارائه میدهد. در این مقاله، یک شبکۀ کانولوشنال عمیق با 8 لایۀ کانولوشن و 2 لایۀ تماماً متصل برای یادگیری ویژگیها بهصورت سلسلهمراتبی و شناسایی خودکار مراحل مختلف صرعی با استفاده از سیگنال EEG ارائه میشود. نتایج نشان میدهند استفاده از یادگیری عمیق در کاربردهایی همچون یادگیری ویژگی بهصورت سلسلهمراتبی و شناسایی مراحل مختلف صرعی، درصد موفقیت بالاتری نسبت به سایر روشهای مشابه دارد. مدل پیشنهادی ارائهشده در این مقاله برای طبقهبندی 3 حالت مختلف صرعی، مقدار 100% را دربارۀ معیارهای صحت، حساسیت و اختصاصیت فراهم میکند.