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Abstract: 
Short term load forecasting is one of the key components for economical and safe operation of power 

systems. In competitive environment of electricity market, electricity utilities require more accurate load 

forecasting strategies to make better decisions on purchasing or generating electricity. This article offers a 

new method based on machine learning short-term load forecasting which is made up of a two-level 

feature selection technique and a new forecast engine. The feature selection part uses irrelevancy and 

redundancy filters to select best sets of input features. The proposed forecast engine is composed of a 

support vector regression machine, hybrid neural network and comprehensive learning particle swarm 

optimization. By applying comprehensive learning particle swarm optimization along with hybrid neural 

networks, the accuracy of forecasting is improved and its error decreases effectively. The proposed 

strategy is tested on PJM and AEMO electricity markets. The numerical results show the effectiveness 

and robustness of this method in comparison with recent short-term load forecasting methods. 
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1- Introduction 
1
 

Load forecasting helps electrical power systems 
to make important decisions on purchasing and 

generating electric power, load switching and 

substructure improvement. Load forecasts can 

be divided into three categories: short-term 

forecasts which are usually from one hour to 

one week, medium forecasts which are usually 

from a week to a year, and long-term forecasts 

which are longer than a year [1]. Short-term 

load forecasting (STLF) has become a serious 

issue for electricity supply. It has a significant 

role in security and reliability which are two 

essential necessities for proper planning and 

operation of power systems. A reliable STLF 

can be practically used in power systems for 

meeting power consumed continuously. In 
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addition, improving economy of operation and 

control of power system can be attained by 

increasing the accuracy of STLF [2-4]. 

Various methods have been used for load 

forecasting up to the present time. Majority of 

these approaches can be broadly divided into two 

classes: the traditional approaches depicted by 
time series and the modern intelligent approaches 

depicted by artificial neural networks (ANN) [5]. 

Traditional methods include classical multiple 

linear regression [6], ARMA (automatic 

regressive moving average) [7], data mining 

models [8], time-series models [9] and 

exponential smoothing models [10]. However, 

the modern intelligent approaches have presented 

higher performance for non-linear time series 

than the traditional approaches [4]. Nowadays, 

artificial intelligence (AI)-based methods such as 

pattern recognition [11], fuzzy feature selection 

[12], fuzzy time series [13], neural networks(NN) 

[14, 15], and fuzzy NNs [16] are highly regarded 

as powerful computational tools for solving the 

problem of load forecasting [17]. Although 

available approaches have provided significant 
enhancement throughout the years, more precise 
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and robust load forecasting methods are still 

needed. 

In this study, a new strategy based on 

machine learning short-term load forecasting 
(ML-STLF) is proposed. This method employs 

a coalition of machine learning (ML) for an 

efficient two-level feature selection and Support 

Vector Regression (SVR) for initial training of 

the nonlinear mapping function. 

The introduced forecast engine employs 

three-stage hybrid neural network (HNN) and 

comprehensive learning particle swarm 

optimization (CLPSO) simultaneously. This 

composition helps the forecast engine to create a 

more precise prediction. Using CLPSO because 

of high global search ability and its high 

capability in combination with local search 

methods can have an important role in 

enhancing the precision of the forecasting 

engines. The efficiency of proposed strategy is 

proved by using some numerical experiments. 
The main parts of this article can be 

summarized in two sections: 

(1) Most of previous studies emphasizes on 

the forecast strategy, whereas they don’t pay 

attention to design of the input vector. Here, an 

efficient data preparation (normalization and 

shuffling) and a novel ML approach containing 

two-level feature selection technique is 

employed to select the privileged candidate 

inputs for the proposed forecast engine. The 

first level filters irrelevant inputs while the 

second one removes redundant candidate 

features. Inputs that have been able to pass 

through this two-level feature selection are 

applied to the forecast engine. 

(2) A new powerful and efficient STLF 

engine is proposed. This engine is made up of a 
combination of three interconnected core units. 

The first part is an auxiliary predictor which 

employs a SVR machine to produce initial 

forecast of target variables. The second and the 

main part is constructed by an HNN which uses 

different training functions in each stage. And 

the last part, which is a cooperative tool for 

HNN, applies CLPSO method to improve the 

learning capability of HNN. 

Following this introduction, the remaining 

parts of this paper is organized as follows: In 

Section 2, the proposed ML-STLF approach is 

introduced. The obtained numerical results of 

the proposed approach are indicated and 

compared with other new STLF methods In 

Section 3. And Section 4 presents the 

conclusion. 

 

 
 

2- Description of the proposed ML-

STLF strategy 

Fig(1) indicates the general structure of 

proposed ML-STLF approach. As can be seen, 

the intended method is made by combining a 

two-level feature selection part with a STLF 
engine, as explained in Sections 2.1 and 2.2, 

respectively. Also, in sections 2.3 and 2.4 

detailed explanations about CLPSO and its 

integration with HNN are given. 

Irrelevancy Filter

 HNN+CLPSO

Redundancy Filter

Two-level 

Feature

Selection

Irrelevant

Features

Redundant

Features

Output (Target Variable)

 Input (Candidate Feature Set) : L(t)

Auxiliary Predictor

(SVR) 
Forecasting 

Engine

Fig(1): Structure of proposed ML-STLF strategy. 

 

2-1- Two-level feature selection 

A key issue for the achievement of any forecast 

strategy is a suitable choice of effective input 

variables. Feature selection can simplify the 

learning process of the forecasting engine and 

improve its generalization capability for unseen 

data. At the stage of feature selection at first, 

irrelevant features are removed and then 

redundant features are executed to create a 

subset covering the best input features. The best 

subset contains the least number of key features, 
which are vital to forecast more precisely. 

Using feature selection in prepossessing 

phase can reduce the dimension of input 

variables in an effective way. In most of the 

previous studies like [7, 14] the authors paid 

attention to forecasting models and different 

heuristic methods were applied for selecting 

input variables. Details of correlation approach 

has been explained in [18] and it has been 
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employed in the feature selection part of STLF 

in [4] and [19]. In correlation approach, the 

relevancy among each candidate input and the 

target value (in this article, load of the next 

hour) is calculated and a depending factor 

determines the relevancy between them. More 

correlation between the target variable and a 

candidate input results in more chance of that 

variable to be selected as an input feature. The 

depending factor among two variables like X 

and Y, denoted by 
,x y , with standard 

deviations
x and y , is computed from 

following relation: 

YX

YX

YX




),cov(
, 

 
(1) 

where  ,cov X Y is the covariance 

of X andY . The absolute value of depending 

factor (which is a number between 0 and 1) 

indicates the amount of linear reliance among 

the variables. The two-level feature selection 

removes the irrelevant and redundant input 

features respectively. By decreasing the number 

of inputs to the forecast engine, the number of 

optimization variables reduces. This action not 

only improves the training accuracy of 

forecasting engine but also increases its training 

speed.  

If correlation index between the output 

feature and a candidate variable is more than a 

relevancy threshold TH1, then this candidate is 

regarded as the relevant feature of the forecast 

process. Other candidate inputs with correlation 

index less than TH1 are regarded as irrelevant 

features as shown in Fig. 1. Next, for the 

remaining candidates, a cross-covariance test is 

executed. Greater value of correlation between 

two selected features indicates more common 

information between. In other words, these 

features have a remarkable level of redundancy. 

If the correlation index across any two candidate 

variables is less than a predetermined value 

TH2, then both variables are selected; 

otherwise, only the variable with the greatest 

correlation according to the target value is 

remained while the other is not considered any 

further. Selected candidate features are regarded 

as the final entries of the ML-STLF engine as 

indicated in Fig. 1. Next, the proposed forecast 

engine must carry out the prediction procedure. 

Its efficient performance in short-term load 

forecasting utilization is one of the key ideas of 

this paper. 

 

2-2- Proposed HNN 

The main propose of this section is 

improvement of forecasting model through 

learning from the selected candidate features 

which are obtained by two-level feature 

selection strategy. SVR is a supervised machine 

learning method which has a high learning 

capability. SVR models are able to deal with 

different kinds of data patterns. For SVR, the 

tendency of the data which may present 

fluctuation or sustained increasing or decreasing 

types does not make much difference. 

Generally, SVR is applied for solving non-linear 

regression and time series problems. A 

computational regression function in a high 

dimensional feature space forms the main 

structure of SVR. This function plots the input 

data to the higher dimensional space. In other 

words, the basic notion of the SVR is to map the 

original data into a higher dimensional feature 

space using a nonlinear process. In this strategy, 

the structural risk minimization inductive 

principle is implemented to generate limited 

numbers of learning patterns. In this article, as 

shown in Fig (2), SVR is applied as an auxiliary 

predictor. Additional information about SVR 

and its operation can be found in [20]. 

Furthermore, SVR has been used for short term 

load forecasting in [7]. 

In this way, the SVR machine receives the 

input features selected by two-level feature 

selection and forwards the output predicted 

values along with input features to HNN. 

A properly designed composition of 

different NNs can strongly improve their 

capability of learning in modelling a 

complicated operation. For instance, several 

various (cascaded and parallel) structures for 

combination of different NNs with enhanced 

capability are presented in [21-23]. An efficient 

HNN, has been proposed in [24] for electricity 

price forecasting. All three NNs applied in HNN 

of [24] have similar structure of multi-layer 

perceptron with a hidden layer. MLP is a high 

yield structure of forecasting neural networks. 

Furthermore, in accordance with Kolmogorov’s 

theory, by selecting appropriate number of 

neurons, only one hidden layer is enough for 

MLP to deal with a problem [25]. Therefore, 

one hidden layer considered to apply in the 
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structure of each NN. As the forecast engine of 

electricity load prediction, a new HNN with the 

architecture shown in Fig (2) is proposed in this 

paper. 

 

LMNN

BFGSNN

BRNN

Weights & Biases Target variable of LMNN

Weights & Biases Target variable of BFGSNN

HNN

Final forecast for target variable

Auxiliary Predictor (SVR)

 

Fig (2): Architecture of Hybrid Forecasting 

Engine. 

As shown in Fig (2), after the SVR machine 

performs the preliminary forecast, the results of 

initial prediction along with the selected 

features are applied to the first stage of HNN 

(LMNN). Also, in each stage of HNN a specific 

NN has been used. Moreover, in this structure 

each NN transmits two vectors of results to the 

subsequent NN. Only the first NN should begin 
with an initial set of random values for the 

adjustable parameters.  In other expression, each 

trained NN hands its obtained proficiency to the 

following NN. Thus, instead of beginning from 

a random point, the training process of each NN 

can be started from the place, that its former NN 

has been reached. Hence, the next NN can 

directly employ the weight and bias values of 

former one, because all NNs of the HNN have 

identical number of inputs, hidden and output 

neurons, the obtained knowledge of the previous 

one can be improved. Furthermore, the second 

sets of consequences transferred among NNs are 

the prediction of target variables. By this 

manner, all NNs also have a preliminary 

forecast of target as an input value, which gets 

great benefit to improve accuracy of the 
prediction. 

In addition, by suitable selection of different 

MLP training algorithms, the HNN can be 

learned much more than a single NN. Further 

discussions for the most efficient NN training 

mechanisms and their mathematical details can 

be found in [25]. In view of the above 

discussion, an improved version of HNN 

forecast engine is proposed for ML-STLF in this 

article. Three kinds of training algorithms have 

been considered for the HNN, owning 
Levenberg–Marquardt Neural Network 

(LMNN), Broyden Fletcher Goldfar Shanno 

neural network (BFGSNN), and Bayesian 

regularization neural network (BRNN). In [3], it 

is explained that the best results are related to 

cascade MLPs which benefit from LMNN In the 

beginning of the training stage. In this way, 

MLP can quickly learn about the problem and 

its training error rapidly decreases. LMNN is a 

fast learning algorithm. Therefore As seen in 

Fig (2) LMNN has been selected as the first NN 

of HNN. BFGSNN is known as the most 

powerful quasi-Nowton method for training 

NNs. If this algorithm starts the learning process 

from a suitable initial point, it will show greater 

ability to find better solutions in the search 

space. Thus, in the second stage BFGSNN has 
been used for detecting superior weights and 

biases in the solution space. In addition,  BR 

learning algorithm minimizes a combination of 

squared errors and weights and then determines 

the correct combination so as to produce a 

network that generalizes well [26]. Therefore, 

BR training mechanism is considered as the last 

NN for final tuning of the adjustable parameters 

and getting the maximum training efficiency. 

 

2-3- CLPSO Algorithm 

Particle swarm optimization (PSO) is a global 

minimization algorithm, which is a powerful 

tool for solving high-dimensional problems. 

Each potential solution is considered as a 

particle, which tries to make its current position 

better than its former position. In other words, 

the position of each particle depends on its 

current position and a velocity vector, which is 

defined for the same particle. The position and 

velocity of particle i  in a physical d  

dimensional search space are expressed as the 

vectors of ],...,,[X 21i idii XXX   

and ],...,,[V 21i idii VVV  , its individual best 

position is ],...,,[P 21besti idpbestpbestipbesti XXX  , and 

Its global best position is 

],...,,[G 21best ngbestgbestgbest XXX . In each iteration, 

the velocity and position of particle i  is updated 

as follows : 

i 1 1

2 2

V ( 1) ( ) ( ( ))

( ( ))

i besti i

best i

k V k c r P X k

c r G X k

   

 
 (2) 

)1()()1(Xi  kVkXk ii
 (3) 
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where )(Vi k is the velocity of particle i  at 

iteration k ;  denotes inertia weight 

factor;
21,C C are acceleration coefficients; 

21,R R  are uniformly distributed random number 

among 0 and 1; )(Xi k  is the position of particle 

i  at k  iteration; 
bestiP is the best position of 

particle i  until iteration k ; and 
bestG  is the 

global best position of all particles until iteration 

k . 

In this paper, an advanced version of PSO 

called comprehensive learning particle swarm 

optimization (CLPSO) [27] has been used. 

CLPSO has demonstrated good performance in 

high dimensional problems. In this algorithm for 

updating the velocity of each particle, 
bestP  of 

all particles will get involved instead of using 

bestP  of each particle for the same particle. Thus, 

the equation (2) is changed as follows: 

( )

i 1 1

2 2

V ( 1) ( ) ( ( ))

( ( ))

if d

i best i

best i

k V k c r P X k

c r G X k

   

 
  (4) 

where )](f),...,2(f),1(f[)(f iiii dd   is a 

vector, which determines the particle i  should 

use 
bestP of which particle in each dimension. 

CLPSO is completely explained in [27].  
In the process of velocity updating, the value 

of some parameters such as ,
21,C C  should be 

decided beforehand. Experimental results show 

that more convergence can be achieved by 

reducing the inertia weight   in each iteration. 

Therefore, the value of   is reduced linearly as 

the iteration k  proceeds and figured as follows: 

max

minmax
max

)(

iter

iter



  (5) 

where 
max  is final inertia weight; 

min  is 

initial inertia weight; iter  is current iteration 

number; and 
maxiter  is maximum iteration 

number.  In this study, all parameters of CLPSO 

are fine-tuned based on the proposed method of 

[27]. 

 

2-4- Combination of HNN and CLPSO 

for designing the Proposed ML-STLF 

Engine 

The hybridization approach of HNN and 

CLPSO to create the suggested ML-STLF 

engine is illustrated in Fig (3). Although 

LMNN, BFGSNN and BRNN benefit from high 

efficient training algorithms, they explore the 

solution space in a particular direction. In this 

manner, these training algorithms may be got 

stuck in a local minima without finding the 

global minima. However, exploration capability 

of CLPSO algorithm can broadly investigate the 

solution space in different directions. Therefore, 
the proposed training method is more possible 

to escape from the local minima. 

At first LMNN is trained by the LM learning 

algorithm. To avoid the over fitting problem, 

early stopping condition is used in the training 

procedure of all NNs, as shown in Fig (3) the 

obtained weight and bias values are transferred 

to CLPSO. Then, CLPSO continues the process 

of training by modelling this process as an 

optimization problem. 

Weights and biases can easily be transferred 

because NNs of HNN and CLPSO component 

have equal training and validation samples. The 

objective function of the optimization problem 

is the error function of LMNN, which should be 

minimized. In other words, CLPSO tries to 

further minimize the validation error of LMNN 
after its learning algorithm is completed. 

The decision variables of the optimization 

problem (particles of CLPSO) are potential 

solutions for weight and bias vectors of LMNN. 

Generally, the position of the particles in 

CLPSO are initialized randomly: 

The initial swarm of CLPSO = 

0,0,20,1 ,...,, NPXXX     (6) 

The structure of  each particle can be shown 

as follows: 

&i LMX W B  (7) 

where & LMW B are weight and bias vectors, 

which are initialized randomly. 

where NP is the number of particles in 

solution space. 

In (6),
0,0,20,1 ,...,, NPXXX  demonstrate the 

initialized positions of the NP particles of 

CLPSO . 

In (7), 
LMBW & are obtained results of the 

weight and bias vectors by LMNN. 

Also, the initial velocity vector of 

NP particles are initialized randomly within 

allowed specific ranges. Then, iterative particles 

of CLPSO change their positions and explore 

the solution space thoroughly. Here, if the value 

of the validation error does not reduce after four 

consecutive iterations, the search process will be 
terminated. Next, the best particle of CLPSO 

(which is covering a weight and bias vector) is 

given back to LMNN; this vector is regarded as 

the final weights and biases of LMNN. Here, 

the learning process of LMNN is completed. 
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Then, as seen in Fig. 3 BFGSNN accepts the 

final weights and biases of LMNN as the initial 

values to start the learning process. For 

BFGSNN, training proses is the same as 
LMNN. Similarly, after finishing the learning 

process of BFGSNN, its final weights and 

biases are transferred to BRNN. Starting from 

this point, the learning process of BRNN is 

executed similar to training process of the last 

two NNs. After completion of the training 

process of BRNN, all NNs of HNN are trained. 

At this point, the proposed ML-STLF engine is 

learned and prepared for the forecast. In this 

way, LMNN using its obtained weight and bias 

values, produces a forecast for the input series 

(Here, the electricity load of the previous 

hours) )(tL , which is applied to BFGSNN. 

Also, BFGSNN and BRNN generate their 

forecast values until the last prediction of )(tL  

is obtained from BRNN. 

LMNN

BFGSNN

BRNN

Weights & Biases Target variable of LMNN

Weights   & Biases Target variable of BFGSNN

Final forecast for target variable
HNN

CLPSO

Auxiliary Predictor (SVR)

 

Fig(3): Architecture of the proposed ML-STLF 

engine. 

 

It should be mentioned that the numerical 

fine-tuning of the proposed ML-STLF method’s 

adjustable parameters, including TH1 and TH2 

which are used in the two-level feature selection 

process and the number of applied neurons in 

each NN’s hidden layer, has been carried out  

by a computationally efficient cross-validation 

method described In [28]. 

 
3- Numerical Results 

There are two prevalent types of STLF 

strategies in electric power systems: hourly 
(next hour) and daily (next day) load forecasting 

[29]. Real-time and future electricity markets 

benefit from hourly and daily load forecasting, 

respectively. For prediction of the next hour’s 

load, the data updates at the end of each time 

interval. Also, prediction of the next day’s load 

is attained by substitution of forecasted values 
for input variables called recursion method [4]. 

This procedure is repeated until the next day’s 

load forecast value is achieved. In this research, 

hourly load forecast and one-day ahead (as the 

prediction horizon) have been considered. 

The proposed ML-STLF strategy has been 

examined on load forecast of day-ahead 

electricity market of PJM. PJM is a well-known 

site in electricity market that coordinates the 

movement of wholesale electricity in different 

states of US. Our test case includes day-ahead 

demand historical data over the period 2011-

2012 which can be found at [30]. The numerical 

experimentations, which are presented in the 

following, are designed to show the high 

performance of the proposed ML-STLF engine 

and evaluate its effectiveness in a comparative 
manner. Fig (4) shows the correlation of 

candidate features of 500 hours ago according to 

the output for December 12, 2012. 

In Fig (4), the horizontal axis indicates 

(candidate according to 1 hour ago) up to 

(candidate according to 500 hours ago) and the 

vertical axis demonstrates the absolute amount 

of correlation coefficients. The greater amount 

of correlation means more relation between 

corresponding candidate and the target vector’s 

value.
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Fig(4):Correlation of candidate features of 500 

hours ago according to the output for December 

12, 2012. 

Results of two-level feature selection 

process with different values of TH1 and TH2 

are presented in Table (1). It can be seen by 

increasing TH1, the initial level of feature 

selection selects candidates that are more 

relevant and by decreasing TH2 the secondary 

level of feature selection filters more redundant 

candidates. However, if these two terms are 

satisfied simultaneously, number of selected 

variables will decrease. So, determination of 

TH1 and TH2 is a trade-off between quality and 
number of features. In this test case, the best 

values of TH1 and TH2 by the cross-validation 

method are determined 0.6 and 0.9, 
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respectively. In addition, in this study, the 

proper number of neurons for hidden layer of all 

NNs for the minimum of the validation error by 

cross validation technique, occurs at NH=10. 

Table (1): Number of Selected Features 

TH1 TH2 Number of selected inputs 

0.7 1 13 

0.7 0.9 6 

0.7 0.8 4 

0.6 1 33 

0.6 0.9 14 

0.6 0.8 7 

0.5 1 69 

0.5 0.9 28 

0.5 0.8 13 

 

In this study, training samples (subsets of 

data) from electricity load related to 39 days 

before the forecast day (results in 39*24=936) 

have been considered. The validation set has 

been randomly selected from training samples. 

Moreover, the 10% of total samples are selected 

as validation set and the rest are considered as 

train set. 

In Table(2), the first and third rank selected 

features (
1tL and

2tL ) consist of information 

about earlier hours. The next more effective 

features contain information about the daily 

seasonality (one day ago) such as 
24tL  and 

23tL , while the later terms are related to weekly 

seasonality (one to three weeks ago). Farther 

days and weeks have less correlation with the 

target hour and so are not considered here. Note 

that by increasing input candidates the selected 

candidates provided in Table (2) will not be 

changed, indicating that more earlier candidates 

have less information value than others. In other 

words, the latest selected candidate features (as 

validation set) have more resemblance to the 

prediction horizon. 

Table (2): Selected features for PJM on December 

12, 2012. 

Rank 
Selected 

 Feature 
Rank 

Selected 

Feature 

1 1tL    8 168tL   

2 24tL   9 337tL   

3 2tL   10 167tL   

4 336tL   11 360tL   

5 23tL   12 169tL   

6 25tL   13 480tL   

7 335tL   14 312tL   

The measurement of forecasting accuracy is 

accomplished by Mean Absolute Percentage 

Error (MAPE), which can be computed as 

follows: 

100
1

(%)
1




 


N

i
i

A

i

F

i

A

L

LL

N
MAPE

 

(

8) 

where: AL  is the actual load, FL is the 

forecasted load, N  is the prediction horizon 

(the amount of hours in the prediction period) 

and i  is the hour index. Another criterion for 

evaluating forecast accuracy is mean absolute 

error (MAE), which is defined by the following 

equation: 





N

i

i

F

i

A LL
N

MAE
1

1
 (9) 

The proposed ML-STLF approach covers 

the prediction period by one-hour steps up to 

reaching out to the end of forecast period. Here, 

the prediction horizon is considered 24 hours. 

For this case study, obtained results (MAPE and 

MAE) from each NN of the proposed HNN are 

represented in Table 3. As shown in Table 3, the 

values of MAPE and MAE have been reduced 

from 2.03% and 0.74 GW to 1.48% and 0.54 

GW, respectively. This table specifies the role 

of each stage of the forecast engine in reducing 

the prediction error. 

 

Table (3): MAPE (%) and MAE (MW) results of 

proposed forecast engine on December 12, 2012. 

NN output MAPE (%) MAE (MW) 

LMNN+CLPSO 2.03 748 

BFGSNN+CLPSO 1.85 717 

BRNN+CLPSO 1.48 548 

 

To compare proposed method with the other 

hybrid approaches, results of different hybrid 

methods are demonstrated in Table 4. In all of 

mentioned methods in Table (4) data pre-

processor and feature selection have been used. 

NN is a one hidden layer perceptron neural 

network, HNN2 is a hybrid neural network with 

two stages and HNN3 is a hybrid neural 

network with three stages. In Table (4) trial 
period is December 12, 2012. In this table, it is 

observed that the proposed ML-STLF engine 

benefiting from CLPSO has been able to 

decrease the values of MAPE and MAE by 54% 

and 37% (respectively) in comparison with 

HNN3. Also, In Fig (5), actual load, forecasted 

load and forecast error on the same day have 
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been shown. It can be seen from Fig (5) that the 

proposed strategy can give an accurate forecast. 

Also, the convergence plot of CLPSO algorithm 

to improve the results obtained by LMNN is 
depicted in Fig.6. This figure shows the value of 

Mean Squared Error (MSE) for normalized data. 

The optimized results in this stage are given to 

the next neural network (BFGSNN) for 

continuing the training process of the forecast 

engine. 

 

Table (4): MAPE (%) and MAE (MW) results of 

suggested ML-STLF and three other methods for 

December 12, 2012. 

Forecast method MAPE (%) MAE (MW) 

NN 4.00 1043 

HNN2 3.64 939 

HNN3 3.27 872 

Proposed  

(ML-STLF) 
1.48 548 

 

 

Fig (5): Actual load (solid line), forecasted load of 

proposed method (dashed line), and its error 

(dotted line) for PJM in December 12, 2012. 
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Fig (6): The convergence plot of CLPSO algorithm 

used to improve the results obtained by LMNN. 

To demonstrate the capability of the 

suggested STLF, in Table (5) four test weeks of 

the year 2012 from the PJM electric power 

market have been examined. The four test 

weeks are February 4 to February 11, May 5 to 
May 12, August 4 to August 11, and November 

10 to November 17. In Table 5, the proposed 

forecast engine (ML-STLF) is compared with 

three MLP neural networks which are trained by 

LM, BFG, and BR learning algorithms, 

respectively. These nonlinear forecast methods 

have been used frequently in many articles to 

predict electricity load demand, electricity price 

and wind power. As shown in Table 5, the 

proposed forecast engine has better forecast 

accuracy than the other forecast methods. As 

presented in the last row of Table 5 the average 

MAPE and MAE for the proposed ML-STLF 

method are 1.34% and 0.526 GW respectively. 

However, the other mentioned methods with the 

same conditions have shown the average value 

of MAPE and MAE 3% and 0.777 GW 
respectively. The proposed method using 

CLPSO in its training mechanism can reach 

better solutions because of its ability to escape 

from local minima. In addition, the proposed 

forecast engine is composed of three 

consecutive NNs to improve the obtained 

knowledge during the forecast process while the 

three other methods use one NN for prediction. 

In Table 6, the obtained results are compared 

with results of reference [31]. These results 

demonstrate good performance of proposed 

method in comparison with the other mentioned 

methods. The structure of Additive model 

presented in [31] is based on a three layer feed-

forward NN which employs Levenberg–

Marquardt algorithm for training. For speeding 

up the training process, the hyperbolic tangent 
function has been applied for hidden neurons 

and output neurons. 

The results presented in Table (6) were 

obtained using historical data from Australian 

Energy Market Operator (AEMO) website [32] 

since October 2008 to March 2009. It can be 

seen from Table 6 that the proposed strategy has 

reached more precise results than the other 

mentioned methods. In the last row of Table (6), 

it is found out that the obtained average values 

of MAPE and MAE from the proposed ML-

STLF method are 8% and 19% (respectively) 

less than the Additive model. These results can 

show the satisfactory performance of the 

proposed method compared with the recent 

strategies. 

The average computation time taken for 
training the proposed ML-STLF model is about 

15 minutes. The hardware configuration of the 

computer used is Intel Core i5 processor with 
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2.30 GHz CPU, 4 GB RAM and the operating 

system used is Windows 7 ultimate. 

 

4- Conclusion 

Load forecasting is very important for secure 

operation of power systems. This paper presents 

a new strategy for STLF. In this strategy, a two-

level feature selection technique and a new 

hybrid forecasting engine are employed. The 

two-level feature selection technique is designed 

for removing both irrelevant and redundant 

candidate inputs. Thus, the most instructive 

features are applied to forecast engine. The 

proposed forecasting engine is a hybrid neural 

network, which benefits from good global 

search capability of CLPSO. In addition, by 

using CLPSO alongside NN high convergence-
learning algorithms can have an important role 

for enhancing the accuracy of forecasting . 

The proposed strategy has been examined in 

PJM and AEMO electricity markets. The results 

illustrate that the proposed model has a high 

level of effectiveness and robustness. Also, 

results of proposed strategy show more 

accuracy compared with methods of recent 

papers. 

 

Table (5): MAPE (%) and MAE (MW) results of MLP with LM, MLP with BFG, MLP with BR and proposed 

ML-STLF engine 

Test week 
MLP with LM MLP with BFG MLP with BR Proposed (ML-STLF) 

MAPE MAE MAPE MAE MAPE MAE MAPE MAE 

February 4.04 1035 4.67 1194 3.02 756 1.23 501 

May 4.32 1075 5.07 1274 3.06 791 1.47 556 

August 3.84 975 5.17 1318 3.03 780 1.22 499 

November 3.90 995 5.23 1365 3.04 784 1.45 550 

Average 4.02 1020 5.04 1287.75 3.04 777.75 1.34 526.5 

 

Table (6): Monthly comparison of performance. 

Month 
ANN [31] Hybrid [31] Additive Model [31] Proposed (ML-STLF) 

MAPE MAE MAPE MAE MAPE MAE MAPE MAE 

October 2008 2.57 134.87 2.15 121.83 1.66 88.55 1.52 74.31 

November 2008 2.63 140.52 2.12 123.50 1.74 94.33 1.67 90.74 

December 2008 2.49 126.39 2.17 116.34 1.55 79.89 1.51 72.63 

January 2009 2.81 168.04 2.14 126.73 1.88 110.21 1.71 93.52 

February 2009 2.37 139.68 1.95 119.07 1.64 96.48 1.44 59.11 

March  2009 2.29 123.21 1.94 116.49 1.59 87.45 1.43 57.81 

Average 2.53 138.79 2.08 120.66 1.68 92.82 1.54 74.68 
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