تشخیص جریان هجومی از جریان خطا در ترانسفورماتورهای قدرت با استفاده از الگوریتم جستجوی گرانشی

نوع مقاله: مقاله علمی فارسی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی برق- دانشگاه بیرجند- ایران

2 استادیار، دانشکده مهندسی برق- دانشگاه بیرجند - ایران

چکیده

پدیده جریان هجومی مغناطیس کننده، حالت گذرای بزرگی است که به هنگام برقدار شدن ترانسفورماتور روی می‌دهد. اندازه جریان هجومی ممکن است تا 10 برابر جریان نامی ترانسفورماتور باشد که به عملکرد نامناسب سیستم‌های حفاظتی منجر می‌گردد. در واقع تشابه بین ویژگی‌های جریان هجومی و شرایط خطای داخلی باعث بروز این خطا می‌گردد. بنابراین، برای کارکرد ایمن ترانسفورماتور لازم است که جریان هجومی از جریان خطا تشخیص داده شود. در این مقاله یک شبکه عصبی مصنوعی که توسط دو الگوریتم مبتنی بر گروه؛ یعنی الگوریتم جستجوی گرانش و بهینه سازی گروه ذرات آموزش داده می‌شود، برای تشخیص جریان هجومی از جریان خطا در ترانسفورماتورهای قدرت به کار رفته است. الگوریتم جستجوی گرانشی بر مبنای قانون گرانش عمل می‌نماید و بر خلاف سایر الگوریتم‌های مبتنی بر گروه ذرات دارای هویت است و الگوریتم بهینه سازی گروه ذرات مبتنی بر حرکت گروهی پرندگان است. این مقاله شامل دو مرحله عمومی است: در گام اول داده‌های بدست آمده از شبیه سازی، پردازش شده و به شبکه عصبی اعمال شده‌اند. سپس در گام دوم شبکه عصبی در نظر گرفته شده با الگوریتم‌های جستجوی گرانشی و بهینه سازی گروه ذرات آموزش داده شده است. در نهایت، به منظور نشان دادن اینکه این روش آموزش مفید بوده، به نتایج دقیق‌تری منجر می‌شود، نتایج بدست آمده از دو الگوریتم پیشنهادی و روش پس انتشار که یکی از رایج‌ترین روشهای آموزش شبکه‌های عصبی است، مقایسه شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Discrimination of Inrush Currents from Faults Current in Power Transformers using Gravitational Search Algorithm (GSA)

نویسندگان [English]

  • Alireza Moradi 1
  • Mahmoud Ebadian 2
  • Mohamad Kazem Daryabar
1 1Department of electrical engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
2 Department of electrical engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
چکیده [English]

The magnetizing inrush current phenomenon is a large transient condition, which occurs when a transformer is energized. The inrush current magnitude may be as high as ten times of transformer rated current that causes mal-operation of protection systems. Indeed, the similarity between signatures of Inrush current and internal fault condition make this failure. So, for safe running of a transformer, it is necessary to distinguish inrush current from fault currents. In this project, an Artificial Neural Network (ANN) which is trained by two different swarm based algorithms; Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO) have been used to discriminate inrush current from fault currents in power transformers. GSA works based on gravity laws and in opposite of other swarm based algorithms, particles have identity and PSO is based on behaviors of bird flocking. Proposed approach has two general stages, in first step, obtained data from simulation have been processed and applied to ANN, and then in step two, using training data considered ANN has been trained by GSA & PSO. Proposed method has been compared with one of the common training approach which is called Back Propagation (BP) and Results show that proposed method is so quick and can do discrimination very accurate.
 

کلیدواژه‌ها [English]

  • : Artificial Neural Network
  • Gravitational Search Algorithm
  • Inrush Current
  • Particle Swarm Optimization
  • Power Transformers

در این پروژه، شبکه عصبی برای تشخیص جریان هجومی از جریان خطای داخلی استفاده شده است. یک الگوریتم جمعی جدید که GSA نامیده می‌شود، برای آموزش شبکه عصبی ارائه شده است. به منظور نشان دادن کیفیت وتوانایی الگوریتم ارائه شده، نتایج به دست آمده از الگوریتم GSA با الگوریتم PSO و BP که یکی از رایج‌ترین روش‌های آموزش شبکه عصبی است، مقایسه شده است. نتایج نشان می‌دهد که الگوریتم ارائه شده (GSA) زمان تست و آموزش را کاهش می‌دهد.

 

 

منابع:

[1] B. Kasztenny, and A. Kulidjian, An Improved Transformer Inrush Restraint Algorithm Increases Security While Maintaining Fault Response Performance, 53rd Annual

 Conference for Protective Relay Engineers, April 2000, pp. 1-27.

[2] M. Sengul, S. Ozturk, and B. Alboyaci, Sympathetic Inrush Phenomenon on Power Transformers and Fault Identification Using Artificial Neural Networks, International Review on Electrical Engineering (I. R. E. E. ), Vol. 4, Issue. 5, September/October 2009, pp. 1067-1075.

[3] M. Yazdani-Asrami, A. Ebadi, R. Ahmadi Kordkheili, M. Taghipour, Effect of Null Wire on the Peak Value of Inrush Current in Three-Phase Transformers Bank, International Review on Modelling and Simulations (I. RE. MO. S. ), Vol. 3, No. 2, April 2010, pp. 140-145.

[4] G. Baoming, A. T. Almeida, Z. Qionglin, and W. Xiangheng, An Equivalent Instantaneous Inductance Based Technique for Discrimination Between Inrush Current and Internal Faults in Power Transformers, IEEE Transactions on Power Delivery, Vol. 20, No. 4, October 2005, pp. 2473-2482.

[5] E. S. Jin, L. L. Liu, Z. Q. Bo, and A. Klimek, Application of Equivalent Instantaneous Inductance Algorithm to the Y-Δ Three-Phase Transformer, IEEE Power and Energy Society General Meeting 2008 - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1-6.

[6] B. He, X. Zhang, and Z. Q. Bo, A New Method to Identify Inrush Current Based on Error Estimation, IEEE Transactions on Power Delivery, Vol. 21, No. 3, July 2006, pp. 1163-1168.

[7] H. Khorashadi-Zadeh, Fuzzy-Neuro Approach to Differential Protection for Power Transformer, IEEE Region 10 Conference 2004 (TENCON 2004), Vol. 3, 2004, pp. 279-282.

[8] H. Khorashadi-Zadeh, Fuzzy-Neuro Approach to Investigating Transformer Inrush Current, 2005/2006 IEEE PES Transmission and Distribution Conference and Exhibition, 2006, pp. 1302-1306.

[9] S. E. Safty, S. Gharieb, A. E. L. Badr, and M. Mansour, A Wavelet Fuzzy Expert Technique for classification of Power Transformer Transients, IEEE International Conference on Power System Technology 2006 (PowerCon 2006), 2006, pp. 1-5.

[10] M. Delshad, S. M. Mosavian-nasab, and B. Fani, A New Method for Improved of Power Transformer Protection Using Fuzzy Logic, In Proc. of International Conference on Electrical Machines and Systems 2007, 8-11 October, 2007, Seoul, Korea, pp. 1279-1282.

[11] P. L. Mao, and R. K. Aggarwal, A Novel Approach to the Classification of the Transient Phenomena in Power Transformers Using Combined Wavelet Transform and Neural Network, IEEE Transactions on Power Delivery, Vol. 16, No. 4, October 2001, pp. 654-660.

[12] O. A. S. Youssef, A Wavelet-Based Technique for Discrimination between Faults and Magnetizing Inrush Currents in Transformers, IEEE Transactions on Power Delivery, Vol. 18, No. 1, January 2003, pp. 170-176.

[13] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, GSA: A Gravitational Search Algorithm, Information Sciences, Vol. 179, 2009,

pp. 2232–2248.

 [14] C. Li, and J. Zhou, Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm, Energy Conversion and Management, Vol. 52, 2011, pp. 374-381.

[15] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, Filter modeling using gravitational search algorithm, Engineering Applications of Artificial Intelligence, Vol. , 2010, pp. 2232–2248.

[16] M. Geethanjali, S. M. R. Slochanal, and R. Bhavani, PSO trained ANN-based differential protection scheme for power transformers, Neurocomputing, Vol. 71, 2008, pp. 904–918.

[17] N. Yan, and Zh. Fu, Optimization and Coordination of UPFC Controls Using MOPSO, International Review on Electrical Engineering (I. R. E. E. ), Vol. 5, Issue. 5, October 2010, pp. 1967-1975.

[18] J. Du, Y. Feng, G. Wu, P. Li, and Zh. Mo, Optimal Design for Rectifier Transformer Using Improved PSO Algorithm, IEEE International Conference on Measuring Technology and Mechatronics Automation (ICMTMA 2010), Vol. 2, 2010, pp. 828-831.

[19] L. Tang, R. Luo, M. Deng and J. Su, Study of Partial Discharge Localization Using Ultrasonics in Power Transformer Based on Particle Swarm Optimization, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, 2008, pp. 492-495.

[20] Richardson, Z. J. Fitch, J. Tang, W. H. Goulermas, J. Y. Wu and Q. H, A Probabilistic Classifier for Transformer Dissolved Gas Analysis with a Particle Swarm Optimizer, IEEE Transactions on Power Delivery, Vol. 23, 2008, pp. 751-759.

[21] H. Li, D. Yang, Zh. Ren and Zh. Li, Based on PSO-BP network algorithm for fault diagnosis of power transformer, IEEE International Conference on Computer, Mechatronics